Cool smartphone with open music application

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever...
 March 17, 2016

computer is a device that can be instructed to carry out sequences of arithmetic or logicaloperations automatically via computer programming. Modern computers have the ability to follow generalized sets of operations, called programs. These programs enable computers to perform an extremely wide range of tasks. A "complete" computer including the hardware, the operating system(main software), and peripheral equipment required and used for "full" operation can be referred to as a computer system. This term may as well be used for a group of computers that are connected and work together, in particular a computer network or computer cluster.
Computer
Acer Aspire 8920 Gemstone.jpg Columbia Supercomputer - NASA Advanced Supercomputing Facility.jpg Intertec Superbrain.jpg
2010-01-26-technikkrempel-by-RalfR-05.jpg Thinking Machines Connection Machine CM-5 Frostburg 2.jpg G5 supplying Wikipedia via Gigabit at the Lange Nacht der Wissenschaften 2006 in Dresden.JPG
DM IBM S360.jpg Acorn BBC Master Series Microcomputer.jpg Dell PowerEdge Servers.jpg
Computers and computing devices from different eras
Computers are used as control systems for a wide variety of industrial and consumer devices. This includes simple special purpose devices like microwave ovens and remote controls, factory devices such as industrial robots and computer-aided design, and also general purpose devices like personal computers and mobile devices such as smartphones. The Internet is run on computers and it connects hundreds of millions of other computers and their users.
Early computers were only conceived as calculating devices. Since ancient times, simple manual devices like the abacus aided people in doing calculations. Early in the Industrial Revolution, some mechanical devices were built to automate long tedious tasks, such as guiding patterns for looms. More sophisticated electrical machines did specialized analog calculations in the early 20th century. The first digital electronic calculating machines were developed during World War II. The speed, power, and versatility of computers have been increasing dramatically ever since then.
Conventionally, a modern computer consists of at least one processing element, typically a central processing unit (CPU), and some form of memory. The processing element carries out arithmetic and logical operations, and a sequencing and control unit can change the order of operations in response to stored informationPeripheral devices include input devices (keyboards, mice, joystick, etc.), output devices (monitor screens, printers, etc.), and input/output devices that perform both functions (e.g., the 2000s-era touchscreen). Peripheral devices allow information to be retrieved from an external source and they enable the result of operations to be saved and retrieved
Cryptovirology is a field that studies how to use cryptography to design powerful malicious software. The field was born with the observation that public-key cryptography can be used to break the symmetry between what an antivirus analyst sees regarding malware and what the attacker sees. The antivirus analyst sees a public key contained in the malware whereas the attacker sees the public key contained in the malware as well as the corresponding private key (outside the malware) since the attacker created the key pair for the attack. The public key allows the malware to perform trapdoor one-way operations on the victim's computer that only the attacker can undo.
The first cryptovirology attack, invented by Adam L. Young and Moti Yung, is called "cryptoviral extortion" and it was presented at the 1996 IEEE Security & Privacyconference.[1] In this attack a cryptovirus, cryptoworm, or cryptotrojan contains the public key of the attacker and hybrid encrypts the victim's files. The malware prompts the user to send the asymmetric ciphertext to the attacker who will decipher it and return the symmetric decryption key it contains for a fee. The victim needs the symmetric key to decrypt the encrypted files if there is no way to recover the original files (e.g., from backups). The 1996 IEEE paper predicted that cryptoviral extortion attackers would one day demand e-money, long before bitcoin even existed. Many years later the media relabeled cryptoviral extortion as ransomware. In 2016 cryptovirology attacks on healthcare providers reached epidemic levels prompting the U.S. Department of Health and Human Services to issue a Fact Sheet on Ransomware and HIPAA.[2] The fact sheet states that when electronic protected health information is encrypted by ransomware a breach has occurred and the attack therefore constitutes a disclosure that is not permitted under HIPAA, the rationale being that an adversary has taken control of the information. Sensitive data might never leave the victim organization, but the break-in may have allowed data to be sent out undetected. California enacted a law that defines the introduction of ransomware into a computer system with the intent of extortion as being against the law.[3]
The field also encompasses covert malware attacks in which the attacker securelysteals private information such as symmetric keys, private keys, PRNG state, and the victim's data. Examples of such covert attacks are asymmetric backdoors. An asymmetric backdoor is a backdoor (e.g., in a cryptosystem) that can be used only by the attacker, even after it is found. This contrasts with the traditional backdoor that is symmetric, i.e., anyone that finds it can use it. Kleptography, a subfield of cryptovirology, is the study of asymmetric back doors in key generation algorithms, digital signature algorithms, key exchanges, pseudorandom number generators, encryption algorithms, and other cryptographic algorithms. The NIST Dual EC DRBG random bit generator has an asymmetric backdoor in it. The EC-DRBG algorithm utilizes the discrete-log kleptogram from Kleptography which by definition makes the EC-DRBG a cryptotrojan. Like ransomware, the EC-DRBG cryptotrojan contains and uses the attacker's public key to attack the host system. The cryptographer Ari Juels indicated that NSA effectively orchestrated a kleptographic attack on users of the Dual EC DRBG pseudorandom number generation algorithm and that, although security professionals and developers have been testing and implementing kleptographic attacks since 1996, "you would be hard-pressed to find one in actual use until now".[4] Due to public outcry of this cryptovirology attack, NIST rescinded the EC-DRBG algorithm from the NIST SP 800-90 standard.[5]
Covert information leakage attacks carried out by cryptoviruses, cryptotrojans, and cryptoworms that, by definition, contain and use the public key of the attacker is a major theme in cryptovirology. In "deniable password snatching", a cryptovirus installs a cryptotrojan that asymmetrically encrypts host data and covertly broadcasts it. This makes it available to everyone, noticeable by no one (except the attacker), and only decipherable by the attacker. An attacker caught installing the cryptotrojan claims to be a virus victim. An attacker observed receiving the covert asymmetric broadcast is one of thousands if not millions of receivers and exhibits no identifying information whatsoever. The cryptovirology attack achieves "end-to-end deniability". It is a covert asymmetric broadcast of the victim's data. Cryptovirology also encompasses the use of private information retrieval to allow cryptoviruses to search for and steal host data without revealing the data searched for even when the cryptotrojan is under constant surveillance.[6] By definition such a cryptovirus carries within its own coding sequence the query of the attacker and the necessary PIR logic to apply the query to host systems.


There has been a long-standing misconception that cryptovirology is mostly about extortion attacks (overt attacks). In fact, the vast majority of cryptovirology attacks are covert in nature. This misconception began to fade in 2013 after whistleblowing revealed that the Dual EC DRBG is a cryptovirology attack that covertly leaks the internal state of the pseudorandom number generator.